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Abstract

Deep learning (DL) models have revolutionized automation in fields such as image classification and segmentation. In traditional computer science
fields, necessary training dataset size and quality, input resolution, and input shape representation/DL architecture pairings have been carefully
selected for specific tasks. Predicting additive manufacturing (AM) part quality is increasingly important as more AM parts are made as end-use
parts, but these predictions are often time and resource intensive. This research compares four DL pipelines’ performance, across different dataset
sizes and input resolutions, at predicting AM print quality. We train our DL pipelines on varied, real world data and systematically evaluate each
model’s predictive performance, training time, and sensitivity to hyperparameter tuning across different dataset sizes and input resolutions. We
build and train voxel, depth image, and distance field 3D CNN and point cloud transformer pipelines that get far superior results to a baseline
model. The distance field 3D CNN model achieves the best performance, 9.62% error, predicting AM print quality compared to 24.96% error
for our baseline model. We find that dataset size and input resolution both impact model performance and hyperparameter sensitivity, but that
dataset size has a greater impact on model performance than input resolution for the DL pipelines we test. We gain initial insight into what
shape representation/DL pipelines are promising for improving AM part quality and performance predictions. Finally, this research demonstrates
a systematic way to fairly compare multiple DL pipelines to a baseline model and evaluate the impacts of changing individual variables in the DL
pipeline.
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For deep learning based image classification, input images
are represented as pixels using two-dimensional arrays. Con-
volutional neural networks (CNNs) and DL architectures that

1. Introduction

Deep learning (DL) models are powerful tools for a wide
range of applications. For example, DL models enable precise
image segmentation in medical diagnostics [30], optimize pro-
cesses in manufacturing [17], and enhance decision-making in
autonomous driving [4]. The success of DL models in these ar-
eas can be largely attributed to training DL. models on enough
high quality data, as well as the choice of appropriate input
shape representations and corresponding DL architectures [21].
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build on CNNs (e.g. ResNet50 [12]) are well-suited to finding
patterns in images. Image classification models are trained on
large, high-quality, labeled image datasets, such as MNIST [7],
CIFAR-10 and CIFAR-100 [16], and ImageNet [6]. Deep learn-
ing has revolutionized image classification, but only because of
careful decision making about training data and DL pipeline
architectures.

The application of DL models in predicting the quality and
performance under load of three-dimensional mechanical parts
is an emerging and promising area of research [13, 33, 10, 31,
14,1, 18,29, 22, 11, 19]. Deep learning models have the poten-
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tial to efficiently learn patterns in part quality and performance
data by exploiting similarities between analogous shapes where
two additively manufactured parts have similar finite element
analysis (FEA) manufacturing process distortion predictions.
If successful, DL models will drastically reduce the computa-
tional and time requirements to run FEA for part quality and
performance data. Speeding up FEA will enable engineers to
iterate designs more quickly and discover better engineering
designs. Reducing the computational requirements of FEA will
make it possible for engineers and researchers without access
to extensive GPU compute resources to generate FEA results.
Early DL part quality and performance research has generated
good results; however, current research is limited to training
models on generally small to medium datasets of relatively sim-
ple, artificial or geometrically limited parts.

Existing DL part quality and performance research can be
characterized by choices made for various aspects such as: (a)
input dataset geometries, (b) dataset size, (c) input shape repre-
sentation, (d) DL architecture, and (e) prediction type.

(a) Input dataset geometries: Nie et al. [22] and Wang et al.
[29] simplify the input to two-dimensional geometries. Jin et al.
[13], Nie et al., Wang et al., Dong et al. [10], Khadilkar et al.
[14], Eranpurwala et al. [11], and Williams et al. [31] synthet-
ically generate simple CAD parts (see example parts in Fig. 1)
for the DL models to train on. Liang et al. [18] and Balu et al.
[1] generate synthetic biological parts by parameterizing from
an original real biological part thus keeping the input geometric
variability quite limited.

(b) Dataset size: The amount of data generated for these re-
search projects varies widely. Wang et al. [29] trains their model
on 128 parts. Jin et al. uses 200 parts [13]. Wong et al. [33] uses
477 parts. Dong et al. [10] uses 420 parts rotated into a second
orientation for 840 total parts. Liang et al. [18] uses 729 parts.
Nie et al. [22], which makes 2D FEA predictions, has 120,960
common cantilevered geometries. Williams et al. [31], which
predicts part mass, support material mass, and build time, uses
72,000 parts. Khadilkar et al. [14] uses 16,700 parts. Balu et al.
[1] uses 90,941 heart valve parts.

Balu et al. uses a dataset of over 90,000 parts with a con-
stricted range of geometries, all heart valves, while Liang et al.
with a seemingly similar level of geometric diversity, all aortas,
uses a dataset of 729 parts. Realistically, deep learning models
(and even machine learning models) need a great deal of data to
learn, but using more data than necessary wastes memory and
computation time. In this research, we experimentally evaluate
how much data is needed for the AM part quality and functional
performance DL domain.

(¢ & d) Input shape representation & DL architecture: For
the research projects that investigate three-dimensional geome-
tries (research that simplifies the input to 2D geometries is omit-
ted because it may not generalize well to 3D) shape represen-
tation/DL architectures used include voxel representation and
3D CNN models [31, 10, 11], point cloud and CNN-PointNet
hybrid model [14], NURBS surface reformatted and convo-
lutional autoencoder algorithm [1], and mesh representation
paired encoder-decoder algorithm and/or graph neural network
(GNN) [13, 33, 18]. There is a lack of clear guidance as to
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Figure 1: Input part geometries from related data-driven part quality and perfor-
mance prediction research [10, 22, 11, 1, 13, 18, 29, 31]. All parts are syntheti-
cally generated for the specific purpose of doing research except in the case of
the two biomedical part datasets where parts are created by artificially param-
eterizing biological parts. Our research uses parts from CAD repositories that
more accurately reflect the true variety of mechancial parts than synthetically
generated geometries. (a) & (b): two-dimensional geometry inputs [29, 22]. (c)
- (f): “simple” synthetic geometries [13, 31, 10, 11]. (g) & (h): geometries based
on parameterizing biological part [1, 18].
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which shape representation/DL architecture combinations are
most effective for DL part quality and performance models, in-
cluding FEA surrogate models.

(e) Prediction type: Current DL models predict part mass
and build time [31], stress [13, 10, 18, 22], deformation [1],
bottom-up stereolithography separation stress [29], and best ad-
ditive manufacturing (AM) orientation [11, 19]. Previous re-
lated research is summarized in Table 1.

The primary objective of this research is to systematically
compare promising shape representation/DL architecture com-
binations and data requirements for predicting the AM print
quality of engineering parts. We investigate the impact of
dataset size and resolution on prediction results for AM print
quality, which will help inform researchers wanting to make
their own datasets or create benchmark datasets especially for
additive manufacturing part quality predictions. To see the im-
pact of dataset size on performance, we have collected a large,
high quality dataset. Similar to Williams et al. [31] and Eranpur-
wala et al. [11], the AM print quality labels in this research are
analytically generated and are not the main contribution of this
research. We hypothesize that DL pipelines that work well on
our AM print quality problem will transfer well to more com-
putationally expensive FEA print quality and performance la-
bels where the analytical approach has significant drawbacks,
namely the time and computational resources required.

We evaluate the shape representation/DL architecture pair-
ings based on the following criteria: (1) DL pipeline predictive
performance over a range of dataset sizes, (2) time and com-
putational resources required to train DL pipeline, and (3) DL
pipeline performance’s sensitivity to hyperparameter tuning.

Three-dimensional CAD data is memory intensive, and thus
while it is important to have large datasets for training, it is also
important not to store and train on more data than needed for
good results. Another objective of this research is to advance
understanding of the relationship between dataset size and DL
performance in this domain.
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Table 1: Deep learning part quality and performance research

Paper Input data geometries  # of parts  Input shape representation DL architecture Prediction type
Nie et al. [22] 2D cantilevered 120,960 pixel geometry, loading CNN stress field
geometries + boundary conditions
Wang et al. [29] simple 2D gf.:ometrles, 128 2D shape_ context NN SLA separation
chess pieces descriptor stress
Dong et al. [10] circular and square 840 voxels 3D CNN, 3D-UNet residual
struts, walls stress
Khadilkar etal. [14]  *™Ple "artificial 16,700 __ pointcloud + CNN + PointNet 2D FEA
geometries image of bottom layer
Balu et al. [1] artificial 90.941 reformatted NURBS convolutional deformation
heart valves surface autoencoder
Williams et al. [31] simple, “artificial 72,000 voxels 3D CNN part & support
geometries mass, build time
. “synthetic” quadrilateral encoder, mapping,
Liang et al. [18] aortas 729 mesh decoding via NNs stress
Jin et al. [13] parameterized 200 mesh GNN 3D stress
wheels
Eranpurwala simple, “artificial 54,000 voxels 3D CNN best orientation
et al. [11] geometries
Wong et al. [33] circular and square 1,505 (477) mesh GNN pressure, coeffs
struts, walls (residual stress)
Our Work mechanical parts 482,214 voxels, point clouds 3D CNN, Transformers AM printability

scores

distance fields, depth images

In this research, four shape representation/DL architecture
pairings and a baseline model are compared as models to pre-
dict AM print quality. Each DL model is trained on data from
our real world engineering dataset. The models are systemati-
cally tuned and compared. Our main contributions include:

e Comparison of four shape representation/DL architecture
pairings to a baseline model for AM print quality predic-
tion:

Distance field 3D CNN DL model,

Depth image (from top and bottom) 3D CNN DL

model,

Voxel 3D CNN DL model,

Point cloud Transformer DL model,

— Mid-point baseline model;

e Analysis of impact of dataset size on DL pipeline predic-
tive performance;

e Analysis of trade-offs between DL pipeline predictive
performance, runtime, and hyperparameter sensitivity to
give a full picture of each model’s performance;

e Hundreds of thousands of varied, real world, labeled
CAD parts for model training and comparison.

2. Background

AM (often colloquially referred to as 3D printing) processes
are a group of relatively novel manufacturing processes that
were originally used for prototyping, but are increasingly used

to fabricate end-use parts [32], which requires higher qual-
ity manufacturing. AM processes give engineers and design-
ers greater geometric design flexibility and shorter product lead
times, but are generally more defect-prone than traditional man-
ufacturing processes. AM allows companies to cut outsourcing
costs, iterate designs more rapidly, speed up the product devel-
opment cycle, generate parts with complex geometries, and cus-
tomize parts. The flexibility in geometric design and potential
for faster iterative design of AM processes give them the poten-
tial to revolutionize industries such as aerospace and medicine.

With the improvement of AM capabilities, these manufac-
turing processes will shape the way we design and manufacture
a variety of goods. However, AM processes often have substan-
dard mechanical properties and are prone to manufacturing, or
build, failures [28]. Improving AM manufacturing quality and
reliability is important if these processes are to be used for
safety-critical end-use parts.

Most AM processes fabricate parts from the bottom up,
layer-by-layer. A 3D CAD model is sliced into thin layers using
a slicing software (e.g. Cura [8]). Then the AM process creates
one layer of the part at a time, for example by depositing or sin-
tering material on the 2D plane for that layer. Then the machine
proceeds to the next layer and repeats until the part is complete.
In the case of fused deposition modeling (FDM), one of the
most common AM processes, the equipment heats up a plastic
filament, which is fed through a nozzle and deposited onto the
build platform layer by layer to form the object.
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Evaluating if a CAD part in a particular orientation will
be manufactured successfully is an ongoing challenge. Re-
searchers have explored analytical approaches to optimizing
3D printing orientation (e.g. Tweaker3 [25], which is used as
a plug-in for Cura). AM print orientation has been optimized
for objectives such as surface quality, build time, support struc-
tures, build cost, part accuracy, post-processing time, and post-
machining defects using a variety of non-machine learning ap-
proaches [3, 9, 24]. Researchers have used approaches that
include exhaustive search, genetic algorithms, simulated an-
nealing, particle swarm optimization, nonlinear programming
solver, heuristic algorithms, and others [3]. These approaches
tend to optimize a single objective (e.g. the amount of support
volume required) in a particular use case and very infrequently
include comparisons to other algorithms, making it challenging
to assess algorithm success.

Eranpurwala et al. [11] converts “synthetically” generated
mesh files (STL files) into 64> voxelized files and uses a 3D
convolutional neural network (CNN) to predict optimal print
orientation. Parts are labeled by the amount of support volume
required to print. The support volume required is calculated us-
ing an analytical formula.

Our research builds on this research to predict AM print
quality in a given orientation using DL pipelines. However, our
main contributions are providing insights into the impact of
shape representation/DL architecture and dataset size on AM
print quality predictions. While the focus of this research is on
one build quality metric for FDM, we hope the findings of this
work can be used to help inform other AM print quality predic-
tions with similar data distributions.

The next section (Methods) describes our research method-
ology including data collection, labeling, and pre-processing,
DL pipeline details and selection rationale, and the DL pipeline
comparison framework. The following section (Results) de-
scribes the experiments and results from the input shape rep-
resentation/DL model pipelines including hyperparameter tun-
ing, model complexity and runtime requirements, and dataset
size sensitivity analysis. The final section discusses potential
directions for future work and conclusions.

3. Methods

A major gap in research this study addresses is evaluating
what shape representation and DL model pairings have enough
expressivity to accurately predict AM print quality and perfor-
mance metrics. This section explains why we selected partic-
ular shape representation/DL pipelines, how we collected and
processed the part data and created the AM print quality labels,
the details of our deep learning (DL) approaches, and finally
the process used to systematically compare DL pipelines and
evaluate dataset requirements.

We build a 64% voxel 3D CNN pipeline because it is a natural
analog to CNN image recognition pipelines and as a compari-
son to other research groups that have used the voxel 3D CNN
pipeline for similar research [11, 31, 10]. Related research uses

Mesh
(STL)

Voxel
(Binvox)

Point
Cloud

Figure 2: Seven example input parts in three shape representations we include in
our dataset (original part representation: mesh/STL, voxel/Binvox, point cloud).
One of the contributions of this research is training on a large dataset of real me-
chanical parts, instead of parts synthesized just for research, in multiple shape
representations. We show our final two shape representations in the next Figure
because they are more involved.

643 voxels with small to medium size datasets (840 — 72,000
parts).

3.1. Data collection, labeling, and shape representations

The part data we use are real world parts from the unlabeled
FabWave data repository [2], which were in turn scraped from
GrabCAD and Autodesk Gallery as mesh files (STL files). We
collect over 80,300 parts. We rotate all parts into five additional
orientations to place each other axis facing up, i.e., rotating the
original part with the +z-axis oriented up to instead have the +x-
axis, +y-axis, and the —z-axis oriented up for the five additional
orientations. This gives us over 482,000 part-orientation combi-
nations. Rotating parts into new orientations creates a more ran-
dom distribution of part-orientation combinations and increases
the dataset size.

The dataset is randomly shuffled and we first separate out
a 10,000 part validation dataset (which we use to validate all
models in this research). Then we randomly sample a 200,000
part training dataset from the parts left. We take the first 1,000,
10,000, and 50,000 parts as subsets to explore the effect of
dataset size. Finally, we remove any part in these training
datasets that exists in the validation dataset in any orientation,
even though different orientations usually have different labels,
to ensure complete isolation between the training and validation
datasets. This gives us four final training datasets of sizes 911,
9,041, 45,091, and 180,294.

We explore different input shape representations to evaluate
which input shape representation does the best job of predict-
ing print quality and to try and find the most efficient input (i.e.
an input shape representation that will get comparable results
in less time or with less computational resources). We test the
following shape representations, in addition to voxels, also with
the 3D CNN DL architecture: (1) distance fields and (2) depth
images. Finally, we tried a new shape representation/DL archi-
tecture pairing, a point cloud Transformer model.

Voxel 3D CNN represents perhaps the most intuitive and
easy to understand pairing of shape representation and DL ar-
chitecture. Different voxel 3D CNN architectures have been
used in several related papers using 64 voxelized input. The
depth image and distance field representations mimic the AM
process. Point clouds have been used in a variety of DL applica-
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Figure 3: One example part, shown in the top left corner, in depth image (from
top and bottom) and distance field shape representations. For the actual data
representations, parts are split into 64 slices (or layers). For visualization pur-
poses this part is only split into four slices.
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tions, such as the Point Transformer architecture, which is de-
signed to capture complex local and global relationships from
point cloud inputs.

To evaluate input dataset requirements, we isolate input res-
olution and increase the input resolution from 64° to 256° to see
the impact of the input resolution on performance.

We convert the mesh files (STL files) into 643 and 256> res-
olution voxelized files (Binvox files [20, 23]) and point clouds
(2,048 x 3 coordinates using trimesh [5], where 2, 048 is the
number of points in the point cloud). Example parts in each of
these three shape representations are shown in Fig. 2.

We transform the parts into the depth image shape represen-
tation using the pinhole camera model: starting from a point in
space (either the top or bottom of the part), we create one ray
per pixel and return the distance traveled until the ray intersects
with a surface of the part. If no intersections happen, we re-
turn zero. We evenly slice each mesh into 64 horizontal slices
to match the resolution of the 64° voxel shape representation.
Each slice is lowered so that its centroid lies on the X-Y plane.
We compute two depth images for each slice, one taken from
above and one taken from below. Each depth image has a reso-
lution 64 x 64, for a total resolution of 64° for the depth image
representation of the part.

Each part’s distance field shape representation is created by
computing the unsigned distance from each query point to the
nearest face. Query points are sampled in a square grid and re-
sized to fit each mesh. Each square grid plane is perpendicular
to the z-plane and axis-aligned. These planes are positioned to
evenly slice the mesh into 64 pieces, identical to the height of
the cuts to generate distance fields. Each square grid contains
64 x 64 points, and thus the total resolution of the field is 64°.
The depth image and distance field shape representations (ex-
ample in Fig. 3) input the part to the DL model as a series of
layers, which is similar to how the part is fabricated and thus
we predict an expressive input for the DL pipeline.

To label the full dataset with AM print quality, we calcu-
late an unprintability score (UPS) for every part in our dataset
using the analytical research software Tweaker3 [25], an open

source slicer plug-in. Tweaker3 uses three factors to calculate
the unprintability score (UPS): (1) area touching the print bed,
(2) overhang area (meshes where the angle is greater than 45
degrees), and (3) contour length of the area touching the print
bed. (These factors are related to stability, volume of support
structure, and warping, respectively.)

Lower UPS scores represent a lower risk of AM print fail-
ure. The UPS Tweaker3 output is a description of the AM print-
ability of the part. The labels range from [0, c0), with zero rep-
resenting a highly printable orientation-part combination, and
larger numbers representing more problematic part-orientation
combinations. Using UPS as the labels allows us to label hun-
dreds of thousands of parts and perform DL analysis on these
parts.

The UPS label data is heavily right-skewed, as illustrated in
Fig. 4a: most of the parts have relatively small unprintability
scores, but a small percentage of the parts have much larger
scores. It is important to be able to predict these larger val-
ues because these scores represent parts that likely will have
problems in the manufacturing process. It is more challenging
to predict right-skewed data, but being able to predict the right-
skewed UPS scores is a good simulator for being able to predict
more computationally expensive and complicated manufactur-
ing metrics, because other manufacturing quality data may also
be skewed with a small percentage of problematic areas that
are important to identify (i.e., FEA predictions of areas of high
process-induced distortion).

It is reasonable to expect other types of AM manufacturing
labels to be non-uniform because more parts will successfully
print (or have low residual stress, distortion, etc.) than not. If
that were not the case, AM manufacturing processes would not
be as successful as they are. On the other hand, there are still
a significant number of print failures and it is highly important
that any DL model be able to successfully predict when prints
will fail (or have issues) even though this may be a small pro-
portion of the total data.

Label data can be processed in several ways to handle
skewed data, including taking the log of the data (Fig. 4b) and
converting scores to their percentiles (Fig. 4c). We chose to pre-
process the label data into percentiles (i.e., calculate what per-
centage of the data a value is larger than) in order to make the
data evenly distributed. The processed UPS scores range from
Zero to one.

3.2. The importance of baseline models

Generally, the goal of DL pipelines in this field is to learn
some information about AM build quality. There are a variety
of metrics to measure how much the DL model has learned (e.g.
L1 loss), but it can be difficult to fairly evaluate how much a
DL model has actually learned from performance metrics alone.
For comparison, an appropriate baseline model should always
be constructed, which is used to give the researcher an idea of
how much the DL model(s) learned compared to a simple alter-
native. We construct a midpoint model that guesses that every
model has a processed UPS score of 0.50, which is the midpoint
of the uniformly distributed, processed UPS scores.
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Figure 4: Histograms of the unprintability score (deep learning label) data: (a) raw data distribution, (b) log data distribution, and (c) percentile data distribution. The
raw data, shown in (a), is heavily right skewed. For the raw data graph, the x-axis scale is split to make it possible to visualize the number of higher unprintability
scores. We show the data processed by taking the log in (b) and using percentiles in (c). Ultimately we pre-process the data using percentiles so that the unprintability
score (labels) are uniformly distributed. This makes the error results more meaningful. If we left the data skewed, we could get results that appeared excellent merely
by guessing a low value unprintability score at all times, but actually did not indicate significant learning.

This comparison addresses the risk with research projects
that use a limited variety of geometries (especially when the
geometries are relatively simple) that a DL model may look like
it’s getting good results, when in reality it is guessing near the
average or mode result for all parts. Note that had we used the
log of the data (as visualized in Fig. 4b) instead of percentiles
to pre-process our data, an appropriate baseline model would
be approximately at the mean of a normal distribution fitted to
the log data. Because of the narrow normal distribution of the
logs, a DL model that learned to predict the mean log value,
regardless of the input, would have appeared to have low error if
error alone was reported without comparison to this appropriate
baseline that could have obtained a similarly low error.

Alternatively if we had not pre-processed the highly skewed
data at all, we could always guess low UPS values and get lower
error than if we attempted to learn when the UPS value is high.
However, it is important to be able to predict high UPS scores,
which represent likely problematic 3D prints. This is why it is
crucial to include an appropriate baseline model in DL appli-
cations. A baseline model makes it clear how much learning is
taking place.

3.3. Deep learning pipelines

3.3.1. Voxel, distance field, and depth image 3D CNN models

Three-dimensional convolutional neural networks (3D
CNNps) are a class of deep learning models designed to process,
analyze, and learn from 3D input data. These networks extend
the traditional 2D image-based CNN architecture by adding a
third dimension to the input and performing convolutions in 3D
space.

We have two closely related 3D CNN architectures: one for
the 643 resolution voxel, distance field, and depth image inputs
and one for the 2563 resolution voxel input. The overall voxel
3D CNN pipeline is in Fig. 5. Each convolutional set contains
the convolutional layer itself, followed by batch normalization,
and then a non-linear activation function. The convolutional
layer kernel size is a hyperparameter that we tune. The outputs
from the convolutional layers are padded with zeros to retain

their original dimensions. Each set is followed by a max pool-
ing layer with kernel size 2x2x2, which compresses the data to
half of the original resolution in all three dimensions with the
goal of extracting the latent features from the convolution. The
channel count of the convolutional layers also varies, with each
layer outputting twice or four times the number of channels it
takes in, as described next.

For the 643 voxel resolution inputs, our DL architecture has
five convolutional sets. We choose five convolutional sets to re-
duce the resolution from 64 to 4* by halving the resolution at
each layer. The number of channels in each hidden layer in-
creases from two output channels (or nodes) for the first hidden
layer to 32 for the final 3D CNN hidden layer. After the con-
volution sets, a final max pooling layer with kernel size 4x4x4
reduces the 32 channels into 32 numbers (a 1D array of num-
bers). Two fully connected linear layers each with weights for
every neuron and a bias at the end to shift the output follow, the
first mapping those 32 numbers to 8 numbers, then the second
from 8 to 1. This final number is the predicted unprintability
score.

For the 256° voxel resolution, our DL architecture has six
convolutional sets. We choose six convolutional sets to reduce
the resolution from 256> to 8° by halving the resolution at each
layer. The number of channels in each hidden layer increases
from two output channels (or nodes) for the first hidden layer
to 256 for the final 3D CNN hidden layer. After the convolution
sets, a final max pooling layer with kernel size 8x8x8 reduces
the 256 channels into 256 numbers (a 1D array of numbers).
Two fully connected linear layers each with weights for every
neuron and a bias at the end to shift the output follow, the first
mapping those 256 numbers to 16 numbers, then the second
from 16 to the UPS.

For both architectures, the networks gradually compress the
input data, and extract the latent features from within the convo-
lutional layers. The channel count keeps increasing through the
convolution sets in order for the 3D CNN to capture more fea-
tures from the inputs while compressing the data. Finally, linear
layers transform the spacial data we get from the convolutions
into the prediction of the UPS.
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Figure 5: 3D CNN model pipelines. Compiled dataset of parts are in the STL file format. Parts are converted to 64> and 256° voxelized (Binvox) format, 643 distance
field format, and two 64> depth image formats using an automated pipeline and then fed into the 3D CNN model which consists of five or six convolutional layers
(depending on input voxel resolution) and two fully connected layers that reduce the output to a single score, the unprintability score (UPS).

3.3.2. Point Cloud Transformer Model

In the Transformer architecture [27], multi-headed attention
allows the network to learn relational information in different
parts of the input simultaneously, which is useful in our context
because AM print quality is determined not by the existence of
each individual point but by how interactions between points
impacts the manufacturing process. An advantage of multi-
headed attention is that it is inherently permutation invariant,
which is a desired feature in this research since the ordering of
individual points does not affect part shape.

Point Transformers [34] build on the PointNet work by us-
ing self-attention, which relates different parts of the input ge-
ometry to each other, to capture relationships between the input
points. Point Transformers outperformed the next best architec-
ture by almost 3% on the segmentation task measured by mean
intersection over union (mloU) as of 2021 when the paper was
published [34]. Point Transfomers use vector attention instead
of the more common scalar attention because scalar attention
loses spatial information (vector attention can capture geomet-
ric relationships in 3D and scalar attention cannot) and is not
permutation invariant.

Point Transformers use vector attention in a transformer
layer. The prediction network has n repeating blocks, each
block containing a Transition Down layer and a Transformer
Layer. For the Transition Down layer, k-nearest neighbors
(kNN) is used to pool local features that are processed with a
multi-layer perceptron (MLP). The output is then locally max-
pooled to reduce the number of features. We perform a hyper-
parameter search on this k as well as the # in our results section.

3.4. Methodology for Systematic Comparison of DL Models

To evaluate our DL pipelines, we compare performance
(using validation L1 loss defined as L(UPS,U PSs) =
ﬁ L \UPS; — UPs i), model efficiency (measured by run-
time), and hyperparameter tuning sensitivity (by evaluating the
average and standard deviation of our results). The DL pipelines
are also directly compared to the baseline model. We contribute
to the existing gap in knowledge by comparing and evaluat-
ing the DL pipelines and creating a framework for future re-
searchers to evaluate additional DL pipelines, which will help

determine what DL pipelines work best for predicting AM print
quality. This framework can also be used to compare perfor-
mance for new areas of DL application.

4. Results

We use our DL pipelines and baseline model to predict 3D
printing part quality, defined by the UPS. Note that although we
predict UPS, this is just one example of a manufacturing part
quality or functional performance metric that our models could
predict. Predicting UPS is a challenging research problem be-
cause the regression data is heavily right-skewed. We believe
UPS may have similar data characteristics to other AM manu-
facturing process labels and hopefully some of our results can
be used to inform other data-driven AM prediction research.

The DL pipelines are trained on a range of dataset sizes, from
911 to 180,294. All models are validated on a separate 10,000
part validation dataset.

4.1. Mid-point baseline model performance

We run the mid-point baseline model, which predicts that
every part will have a processed UPS score of 0.5, on the val-
idation dataset. The mid-point baseline has an L1 loss on the
validation set of 0.2496, which is in line with the expected value
of 0.25 when guessing 0.5 for every input.

4.2. Voxel 3D CNN model performance

We train and tune our 643 voxel 3D CNN model on four
datasets of sizes 911, 9,041, 45,091 and 180,294, and our 256>
voxel 3D CNN model on three datasets of sizes 911, 9,041, and
45,091.

We tune the following hyperparameters: kernel size (KS),
learning rate (LR), batch size (BS), and non-linear activation
function. Kernel size is tuned as either three or five. Learning
rate is tuned as 0.001, 0.0001, or 0.00001. Batch size is tuned
as 4, 8, or 32 for the 643 voxel models, but always 4 for the
256 voxel models because that is the largest batch size that can
be loaded. Non-linear activation function was initially trained
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as ReLLU or Sigmoid, but we report final results for just ReLU
because, as we show below, ReLU performs better across the
board.

We do not train the 256> voxel 3D CNN model on the
180,294 part dataset because that would be highly resource in-
tensive and we find that we already have enough data to show
that increasing dataset size has more impact on model predic-
tive performance than increasing input resolution. Similarly, we
train the models for 20 epochs in all cases except for the 2563
voxel 3D CNN model when trained on the 45,091 dataset. In
this single case, we use 10 epochs because of how long it takes
to run just one hyperparameter combination (i.e. over a day).

Both voxel 3D CNN models perform better when trained on
more data, and the 256° voxel 3D CNN model performs better
than the 64% voxel 3D CNN model when trained on the same
size dataset. As a trade-off, larger dataset size seems to have
a greater impact on performance than higher input resolution
(see Tables 3 and 4). An example: increasing dataset size by a
factor of approximately 20 (from 9,041 to 180,294) while de-
creasing input resolution by a factor of 64 (from 2563 to 64%)
has a better best performing DL model and better average DL
model performance.

Both voxel 3D CNN models’ ability to generalize from the
training data to the validation data differs based on how much
data the model was trained on. For example, for the 643 3D
CNN model trained on the 180,294 part dataset, the validation
L1 loss can be minimized to 0.0975 with the best hyperparam-
eters, compared to 0.1167 for the 45,091 dataset, 0.1383 for
the 9,041 part dataset, and 0.1742 for the 911 part dataset with
their best hyperparameters. The higher validation losses when
training on the smaller datasets occurs mostly due to more over-
fitting to the training data for the smaller datasets. This can
be inferred because the 180,294 part dataset has only a some-
what lower training L1 loss than the 911, 9,041, and 45,091 part
datasets, but it has a much lower validation loss. This effect can
be seen in Fig. 7, which compares training and validation losses
for the models trained on the 911 and 45,091 part datasets. The
model trained on the larger (45,091 parts) dataset does not over-
fit, which we can see from the similar training and validation
losses, whereas for the smaller (911 parts) dataset, the model
does seem to overfit, because the training loss is much lower
than the validation loss.

The average performance (measured by average validation
L1 loss) is significantly better when the 64 voxel 3D CNN
model is trained on the 180,294 part training dataset or the 2563
voxel 3D CNN on the 45,091 part training dataset compared to
the smaller datasets for each resolution. For the 64° voxel 3D
CNN model, the average L1 loss is 0.1158 for the 180,294 part
dataset compared to 0.1349 for the 45,091 part dataset, 0.1619
for the 9,041 part dataset, and 0.2113 for the 911 part dataset
(see Fig. 6 for full visualization).

Another advantage of training on the larger datasets is that
it makes the model less sensitive to hyperparameter tuning. For
example, on the 643 voxel 3D CNN model, the standard devi-
ation of the loss is lower for the 180,294 part dataset, 0.0148
compared to 0.0171 for the 45,091 part dataset, and 0.0216 for
the 9,041 part dataset.

64> Voxel 3D CNN Pipeline Performance by Dataset Size

Mid-point baseline
Model best runs

Model Avg. - Std. Dev.
Model Avg. + Std. Dev.
0.18 == Model Avg.

L1 Loss

0 50k 100k 150k
Training Dataset Size (# of Parts)

Figure 6: 64> voxel 3D CNN model performance results (measured using L1
loss) compared to the mid-point baseline model for 911, 9,041, 45,091, and
180,294 training datasets. Model performance improves significantly with in-
creasing training dataset size; however, the effects of additional data decrease
as dataset size increases.

For the 256> voxel 3D CNN model, the average L1 loss is
0.1185 for the 45,091 part dataset, compared to 0.1469 and
0.1936 for the smaller training datasets. For the 45,091 part
dataset, the standard deviation in the L1 loss results is also
smaller, 0.0099, compared to 0.0177 and 0.0237 for the smaller
datasets.

For 64° and 256 voxel 3D CNN pipelines, increasing
dataset size by approximately a factor of 10 (from 911 to 9,041)
decreases L1 loss (thus improving model predictive perfor-
mance) by 23.4% and 24.1%. Increasing dataset size again,
this time by a factor of approximately five, decreases L1 loss
by 16.7% and 19.3%. The final roughly four-fold increase in
dataset size for the 643 input resolution decreases L1 loss an-
other 14.2%. In contrast, increasing input resolution by a factor
of 64 only decreases L1 loss by 8.4%, 9.3%, and 12.2% (for the
911, 9,041, and 45,091 dataset sizes).

4.3. Distance field and depth image 3D CNN model perfor-
mance

We tune the 643 distance field and depth image 3D CNN
models on the exact same hyperparameter combinations as the
643 voxel 3D CNN model. For the same dataset size (45,091)
and input resolution (64%), the average and best distance field
3D CNN model performs better than both depth image and
voxel 3D CNN models. Furthermore, the average 643 distance
field 3D CNN model trained on a dataset of 45,091 performs
almost as well as the average 643 voxel 3D CNN model trained
on a dataset of 180,294. A comparison between voxel, depth
image, and distance field 3D CNN models, all trained on the
45,091 part dataset, is shown in Fig. 8. The performance results
for the distance field 3D CNN, which performs better than ei-
ther depth image 3D CNN model, trained on a range of dataset
sizes, is illustrated in Fig. 9.

4.4. Point cloud Transformer model performance

The point cloud Transformer model is trained and tuned on
three dataset sizes: 911, 9,041, and 45,091.
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Voxel 3D CNN Pipeline
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Figure 7: Comparison of training and validation losses for the 64> 3D CNN models trained on 911 and 45,091 part datasets. Graph shows mean and one standard
deviation in each direction for training and validation on each dataset. It can be seen that the model overfits more on the 911 part dataset than the 45,091 part dataset
due to the larger gap between training and validation performance for the model trained on the 911 part dataset.
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Figure 8: Comparison of 64° voxel, distance field, and depth image 3D CNN
models’ performance (measured using L1 loss) trained on the 45,091 part
dataset.

Distance Field 3D CNN Pipeline Performance by Dataset Size
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Figure 9: Graph showing the Distance Field 3D CNN pipeline’s ability to pre-
dict additive manufacturing print quality (measured using L1 loss) compared to
the mid-point baseline model for 911, 9,041 and 45,091 training datasets.

We tune the following hyperparameters: learning rate (LR),
batch size (BS), number of nearest neighbors (k), number of
transformer blocks (nb), and transformer embedding dimension
(TD). Learning rate is tuned as 0.001 or 0.0001. Batch size is
tuned as 4, 16, or 32. K-Nearest Neighbors is 8, 32 or 128.
The number of transformer blocks is tuned as 2 or 4. The trans-
former embedding dimension is 32 or 64. Number of epochs is
20. Non-linear activation function is trained as ReLLU, the same
implementation used in the Point Transformer architecture [34].

Similar to the 3D CNN pipelines, the Transformer pipeline
performs better when it trains on the larger datasets. We ran
the point cloud Transformer model on the 180,294 part dataset
and it was plateauing. Since computational resources are finite,
we do not fully train and tune it on the 180,294 part dataset
because we expect the results will be only marginally better,
and not affect our conclusions.

Our results suggest that although point cloud Transformers
perform well with tasks such as semantic classification and seg-
mentation of point clouds, at the current dataset size and input
resolution, they do not perform as well as 3D CNNs for AM
part quality problems.

To test if point-cloud resolution could be limiting perfor-
mance, we increase point cloud resolution, testing point cloud
size ranges from 2,048 to 16,384 points. Point cloud Trans-
former performance actually worsens with increasing point
cloud size. This may be because the larger input increases the
overall model size and there may not be enough parts to prop-
erly train the larger model. Interestingly, while Transformers
that are used in models such as LLaMA and SAM [26] [15]
have huge numbers of parameters (13B for the former and
636M for the latter), our hyperparameter search shows that
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smaller models (around 300K parameters when using lower
resolution point cloud inputs) perform better than larger ones
(around 1-10M parameters when using higher resolution point
cloud inputs) for our task; however, LLaMA is trained on 1.4
trillion tokens and SAM is trained on 11 million images. It
is possible that the higher resolution input point cloud Trans-
former models would perform better if trained on orders of
magnitude more data, but our results suggest it is equally pos-
sible this architecture is not as well suited for AM applications
as 3D CNNGs.

4.4.1. Model comparison

We compare four DL pipelines across different dataset sizes
and hyperparameters in the two tables below. The DL models
are also compared to the baseline model. In both tables, Dataset
size refers to the training dataset size. All models are validated
on a separate validation dataset of size 10,000. Average and
Standard Deviation L1 loss in Table 3 and L1 loss in Table 4
all represent the validation L1 loss. In Table 3, KS refers to ker-
nel size, LR is learning rate, BS is batch size, and E is epoch.
ReLU, or rectified linear unit, is the non-linear activation func-
tion used. We test both ReLU and sigmoid for the 64° and 2563
voxel 3D CNN models, but ReLU almost exclusively performs
better for both voxel resolutions (better on average, as well as
lower standard deviations) and so we exclude sigmoid from the
distance field and depth image hyperparameter tuning (Table 2
compares the difference for the 643 resolution). For point cloud
Transformer tuning, nb is the number of Transformer blocks,
TD is the transformer dimension, and k is the number of near-
est neighbors checked.

Dataset Input Avg., Std. Dev. L1 Loss
size resolution ReLLU Sigmoid
45,091 643 0.1349,0.0171  0.1609, 0.0397
9,041 64 0.1619, 0.0216  0.2086, 0.0478
911 643 0.2113, 0.0215 0.2446, 0.0206

Table 2: For Voxel 3D CNN DL pipelines, a comparison of average and standard
deviation L1 Losses with using ReLU as the non-linear activation function or
using Sigmoid as the activation function for different dataset sizes. ReLU per-
forms almost exclusively better so we only use ReLU when training the depth
image and distance field DL pipelines.

We used GTX 2080 Ti graphics cards for training the DL
models. Each run uses 1 GPU and 4 Intel Xeon Skylake cores.
For the mid-point baseline model, GPU acceleration is insignif-
icant, so we perform this computation on an Intel Xenon CPU.

We summarize our DL models’ results over all hyperparam-
eters in Table 3. We show the best (measured by lowest valida-
tion L1 loss) models in Table 4. The training time reported in
Table 4 is the time it takes to train the model on that particular
combination of hyperparameters and validate the model on the
validation dataset. The 64° voxel 3D CNN model trained on the
180,294 part dataset and distance field 3D CNN model trained
on the 45,091 part dataset have the lowest L1 losses. The dis-
tance field 3D CNN model trained on the 9,041 part dataset and

the 643 voxel 3D CNN model trained on 45,091 part dataset
have relatively low L1 losses and take much less time to train.

The first takeaway of the model comparison is that the 3D
CNN models are significantly better able to predict UPS than
either the point cloud Transformer model or the mid-point base-
line model. The best 3D CNN model has 9.62% error com-
pared to 20.11% for the best point cloud Transformer model
and 24.96% for the baseline model. The distance field 3D CNN
model is the most promising model, although the voxel 3D
CNN and depth image 3D CNN are not significantly worse.
The distance field shape representation is the most promising
because it has the best performing model with 9.62% error and
a more than one standard deviation lower L1 loss on average
than the corresponding voxel and depth image inputs (better at
predicting AM print quality on average). One reason to consider
another shape representation is timing. The 64° voxel 3D CNN
model trained on 45,091 parts takes much less time to train than
the 643 distance field 3D CNN model trained on 45,091 parts.
If training time and resources are severely limited, then the 64°
voxel shape representation is more promising.

Increasing dataset size significantly improves 3D CNN
performance results and decreases hyperparameter sensitivity,
mainly because the models overfit less when trained on larger
datasets. Increasing data resolution also improves 3D CNN per-
formance, but not at the same rate. For example, an approxi-
mately four times increase in dataset size improves model per-
formance about as much as a 64 times increase in data resolu-
tion. However, there may be cases were researchers or industry
engineers cannot collect more data, in which case increasing
data resolution would be a valid second choice.

5. Future Work and Conclusion

This research creates a framework for comparing mechan-
ical part DL pipelines to each other and a baseline model to
improve manufactured part quality and functional performance
predictions. Two natural extensions of this work are to use this
framework to compare our results to additional DL architec-
tures (e.g. deep neural operator models) and shape representa-
tions, as well as using the framework with improved label qual-
ity.

This research focuses on identifying and analyzing promis-
ing input shape representations and DL pipelines, as well as
determining data requirements in this field. We find that the
distance field shape representation yields the best results. How-
ever, if time or resources are severely limited, then voxels are
more efficient. Increasing dataset size and input resolution both
improve performance; however, dataset size has a bigger im-
pact on performance. If collecting or using more data is not an
option then it makes sense to increase input resolution.

In conclusion, we train and tune four deep learning pipelines
on a range of dataset sizes and input resolutions and find that
distance field and voxel 3D CNNs have the best performance.
We are able to achieve an error of 9.62% compared to 24.96%
from our baseline model.
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Table 3: Deep learning pipeline & baseline model performance summary for each combination of pipeline, dataset size, and input resolution size.

DL pipeline Dataset size Input resolution Avg. L1 loss Std. Dev. L1 loss
Voxel - 3D CNN 180,294 64° 0.1158 0.0148
45,091 643 0.1349 0.0171
9,041 643 0.1619 0.0216
911 643 0.2113 0.0215
45,091 256° 0.1185 0.0099
9,041 256° 0.1469 0.0177
911 256° 0.1936 0.0237
Distance Field - 3D CNN 45,091 64° 0.1196 0.0143
9,041 643 0.1447 0.0167
911 643 0.1838 0.0158
Depth Images (from top) - 3D CNN 45,091 64 0.1372 0.0096
9,041 643 0.1626 0.0076
911 643 0.2011 0.0155
Depth Images (from bottom) - 3D CNN 45,091 64° 0.1341 0.0104
9,041 643 0.1605 0.0104
911 643 0.2043 0.0146
Point Cloud - Transformer 45,091 (2048, 3) 0.2284 0.0201
9,041 (2048, 3) 0.2494 0.0323
911 (2048, 3) 0.2548 0.0044
Mid-point Baseline N/A 0 0.2496 N/A
Table 4: Best performing deep learning models (measured by lowest L1 loss) for each pipeline and dataset size
DL pipeline Dataset size  Input res. Hyperparameters L1 loss Train time
Voxel - 3D CNN 180,294 643 ReLU, KS=5, LR=0.001, BS=32 0.0975, E=20 4h 9m
45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.1167, E=20 1h 9m
9,041 643 ReLU, KS=3, LR=0.001, BS=8  0.1383, E=20 19m
911 643 ReLU, KS=5, LR=0.001, BS=4  0.1742, E=20 12m
45,091 2563 ReLU, KS=5, LR=0.0001, BS=4 0.1049, E=10 1d 19h 40m
9,041 2563 ReLU, KS=5, LR=0.001, BS=4  0.1239, E=20 22h 54m
911 2563 ReLU, KS=3, LR=0.0001, BS=4 0.1693, E=20 7h 43m
Distance Fields - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.0962, E=20 14h 23m
9,041 643 ReLU, KS=5, LR=0.001, BS=32 0.1220, E=20 25m
911 643 ReLU, KS=5, LR=0.001, BS=4  0.1615, E=20 13m
Depth Image (top) - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.1209, E=20 9h 3m
9,041 643 ReLU, KS=5, LR=0.001, BS=32 0.1527, E=20 27m
911 643 ReLU, KS=3, LR=0.0001, BS=4 0.1830, E=20 16m
Depth Image (bottom) - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=4  0.1203, E=20 14h 52m
9,041 643 ReLU, KS=5, LR=0.001, BS=8  0.1488, E=20 24m
911 643 ReLU, KS=5, LR=0.0001, BS=4 0.1892, E=20 14m
Point Cloud - Transformer 45,091 (2048, 3) nb=2, TD=64, k=8, LR=1e-4 0.2012, E=20 13h 44m
9,041 (2048, 3) nb=2, TD=32, k=8, LR=1e-4 0.2265, E=20 4h 6m
911 (2048, 3) nb=4, TD=32, k=8, LR=1e-3 0.2498, E=20 2h 14m
Mid-point Baseline 10,000 0 N/A 0.2496 <lm
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